Global stability of travelling fronts for a damped wave equation with bistable nonlinearity

نویسنده

  • Thierry GALLAY
چکیده

We consider the damped wave equation αutt +ut = uxx−V ′(u) on the whole real line, where V is a bistable potential. This equation has travelling front solutions of the form u(x, t) = h(x − st) which describe a moving interface between two different steady states of the system, one of which being the global minimum of V . We show that, if the initial data are sufficiently close to the profile of a front for large |x|, the solution of the damped wave equation converges uniformly on R to a travelling front as t→ +∞. The proof of this global stability result is inspired by a recent work of E. Risler [38] and relies on the fact that our system has a Lyapunov function in any Galilean frame.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Travelling fronts for multidimensional nonlinear transport equations

We consider a nonlinear transport equation as a hyperbolic generalisation of the well-known reaction diiusion equation. We show the existence of strictly monotone travelling fronts for the three main types of the nonlinearity: the positive source term, the combustion law, and the bistable case. In the rst case there is a whole interval of possible speeds containing its strictly positive minimum...

متن کامل

Uniqueness of travelling fronts for bistable nonlinear transport equations

We consider a nonlinear transport equation as a hyperbolic generalisation of the well-known reaction diffusion equation. Themodel is based on earlier work of K.P. Hadeler attempting to include run-and-tumble motion into the mathematical description. Previously, we proved the existence of strictly monotone travelling fronts for the three main types of the nonlinearity: the positive source term, ...

متن کامل

Bistable travelling waves for nonlocal reaction diffusion equations

We are concerned with travelling wave solutions arising in a reaction diffusion equation with bistable and nonlocal nonlinearity, for which the comparison principle does not hold. Stability of the equilibrium u ≡ 1 is not assumed. We construct a travelling wave solution connecting 0 to an unknown steady state, which is “above and away” from the intermediate equilibrium. For focusing kernels we ...

متن کامل

Stability of Travelling Waves for a Damped Hyperbolic Equation

We consider a nonlinear damped hyperbolic equation in R, 1 ≤ n ≤ 4, depending on a positive parameter ǫ. If we set ǫ = 0, this equation reduces to the well-known Kolmogorov-Petrovski-Piskunov equation. We remark that, after a change of variables, this hyperbolic equation has the same family of one-dimensional travelling waves as the KPP equation. Using various energy functionals, we show that, ...

متن کامل

Travelling Fronts in Asymmetric Nonlocal Reaction Diffusion Equations: the Bistable and Ignition Cases

This paper is devoted to the study of the travelling front solutions which appear in a nonlocal reaction-diffusion equations of the form ∂u ∂t = J ⋆ u− u+ f(u). When the nonlinearity f is of bistable or ignition type, and the dispersion kernel J is asymmetric, the existence of a travelling wave is proved. The uniqueness of the speed of the front is also established. The construction of the fron...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007